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Conversion Factors, Non-Sl to
S| Units of Measurement

Non-SI units of measurement used in this report can be converted to Sl units
as follows:

Muttiply By To Obtain

cubic feet 0.02831685 cubic meters

degrees (angle) 0.01745329 radians

feet 0.3048 meters

inches 2.54 centimeters

miles (U.S. statute) 1.609347 kilometers

pounds (mass) 0.4535924 kilograms
u:quara font 0.09290304 square meters
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1 Introduction

Background

Many streams can be found in which the channel planform results in a high
degree of hydraulic irregularity. A prime example is a braided planform in
which muitiple channels exist over a wide range of flow conditions. These
multiple channels tend to migrate due to erosion and deposition processes
typically found in alluvial channels. Migration rates can be quite rapid when
upstream midchannel islands and bars are breached or when logjams give way.
Channel migration often leads to flow being directed against bank lines at
large acute angles, which is referred to herein as flow impingement. Flow
impingement results in significant stress on the bank line, and channel
protection is often required to maintain channels in a fixed position. The
maximum atiack often occurs at intermediate rather than high discharges
because high discharges tend to submerge the midchannel! isiands and bars and
the flow is more generally directed in a downstream direction. When stages
exceed the tops of the midchannel bars, the channel area increases rapidly and
velocities do not show the same rate of increase with stage. While the
locations of flow impingement show some degree of regularity, entire channel
reaches must often be protected because the locations of flow impingement
cannot be predicted with enough certainty to leave some areas unprotected. At
impingement sites, bank lines are subjected not only to high velocity but also
to deep scour, and undermining of bank protection is a common occurrence.

An example where flow impingement is a problem is the Snake River near
Jackson, WY (Figure 1), which is a braided stream with levees on one or both
sides of the channel that are almost completely protected with riprap
revetment. The levees in this reach average about 1,200 i apart. The river
appears in some areas to meander between the levees, while in other areas the
braided planform is evident. This upper reach of the Snake River has a slope
of about 19 fi/mile and the peak runoff is snowmelt, which generally occurs in
early June. A plot of discharge versus date for various exceedance percentages
at the gage known as Below Flat Creek is shown in Plate 1. The mean peak
discharge is about 12,000 cfs, and 90 percent of the years have a peak

1 A table of factors for converting non-SI units of measurement to Sl units is found on
page v.
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discharge of 18,000 cfs or
less. In 1986, a major event
occurred with a peak dis-
charge of 25,600 cfs. The
largest known flood occurred
in 1894 with an estimated
peak of 41,000 cfs. The bed
materiai in this reach is sand
and gravel ranging up to 3

YELLOWSTONE
PARK

rap gradation is placed near
the toe of the slope. The
levee cross section presently
Figure 1. Location map used in this reach is shown
in Plate 2.

i JACKSON maximum size of 6-10 in.

i LAKE Unfortunately, bed material
: dation data are not avail-

wy gra : :

! OMING able for this reach. The size
SO JACKSON of t‘he riprap on the levees

! varies widely as does the

! STUDY unit weight of thf: stone.
VRIVES REACH The larger stone in the rip-
i

Objective and Scope

The overall objective of this study is to develop guidance for design of
riprap under flow impingement. The scope of the study reported herein was o
observe and document the characteristics of flow impingement zones including
nearbank velocities and depths, water-surface slopes, and alignments and to
develop methods for estimating impinged flow velocities and scour in braided
channels. Information obtained from this field study will be used to investi-
gate riprap size in a physical model. This report {aresents details and
information in addition to that given in Maynord.

1§ T. Maynord. (1992). "Flow impingement velocities, Snake River, Wyoming." Hydraulic
Engineering: Saving a Threatened Resource—in Search of Solutions; Proceedings, Hydraulic
Engineering Sessions at Water Forum ‘92, Baltimore, MD, August 2-6, 1992. Marshall
Jennings, Nani G. Bhowmik, ed., American Society of Civil Engineers, New York, 139-144.
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2 Description of Tests and
Data

On 5 June 1991, the river was inspected and 14 areas of significant im-
pingement were found in the project reach. Velocity measurcments were made
at eight of these sites, as shown in Figure 2. Future cfforts of this typc should
also obtain aerial photographs of the project just vefore measurements are
conducted.

[ Smemsmo——| s AN
0 1 GROS VENTRE RIVER /
SCALE, MILES

Figure 2. Snake River project reach and impingement sites

The measurements reported nercin were coiicctud between 6-8 and
10-12 June 1991, which was the peak runoff period for 1991. Plate 1 shows
the mean daily discharge at Below Flat Creek on the Snake River for May,
June, and July 1991. The mean daily discharge at Below Flat Creck
(downstream of Wilson Bridge) was 14,000 cfs on 6 June, 14,500 cfs on 7 and
8 June, 15,000 cfs on 10 June, 15,500 cfs on 11 June, and 16,000 cfs on
12 June. The discharge began to fall on 13 June. Therefore, 1991 had an
above-average runoff. The discharge ncar the mouth of the Gros Ventre River
was about 2,100 cfs during 6-12 June 1991, The watcr-surface elevation
during 6-12 June was near the top of many of the midchannel bars.

Price and electromagnetic velocity meters were mounted on lead fish and
supported by an extendable boom crane that could reach up to 40 ft from the
bank line, as shown in Figurc 3. Even though the electromagncetic velecity
meter could measure velocity in two directions, only the velocity parallel to
the orientation of the lead fish was used in this investigation. Initially, a

Chapter 2 Description of Tests and Data




Figure 3. Crane at velocity site B-4, looking downstream

100-1b lead fish was used, but this was swept oo far downstream and a second
lead fish weighing 140 Ib was attachcd below the first one.

Future studies should use a single 200- to 250-It lead fish for the high
velocities encountered in this study. When near the bank linc in shailow
depths, the lead fish exhibited erratic side-to-side movement, which made
velocity and depth measurements difficult. A graduated tape was attached
both hurizontally and vertically to the cable supporting the meter to detcrmine
the position of the meter. Bottom position was noted when the {ish hit bottom
and the cable deflected. Future studics should consider some type of
electronic depth meter. The velocity meter had to be frequently raised to
prevent damage to the velocity meter from debris. The cable supporting the
velocity meter should not be strong enough to pull the cranc over if large
debris hangs up on the meter.

The two types of impingement sites that were observed on the Snake River
were dependent on the alignment of the levee. Velocity sites A-1, A-2, B-4,
D-1, D-2, and E-1 were impingement sitcs where the levee was straight.
Velocity sites B-1 and E-2 were sites in a curved part of the levee having a
outer bank linc radius of 300-500 ft. In most cascs the typical site had a wide,
shallow approach channecl that gradually converged toward the impingement
site. The angle of the approach flow ranged up to 70 deg. Plates 3-10 show
schematics of the impingement sites.  Figures 4-8 show impingement sites.

Velocities were taken at the apparent point of main attack (designated

sta 5+00 with stations increasing in a downstrecam dircction), and additional
stations were taken upstream and downstream of that point. Water-surface
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Figure 5. Site A-2, looking upstream
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Figure 6. Site B-1, looking upstream

Figure 7. Site E-2, looking upstream
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Figure 8. Site B-4, looking upstream

elevations relative to an arbitrary datum were measured upstream and down-
stream of sta 5+00 o cstablish water-surface slope. Water-surface clevations
were measured at the bank line with a fevel rod. Plots of observed velocitices
at cach sitc are shown in Plates 11-37. Water-surface profile plots are shown
in Plates 38-47.

Comments about cach site arc presented in the order of the initial mcasure-
ment as follows:

a. Site E-1 (6 June 1991). At site E-1, almost all of the riverflow was in 4
single channcl against the levee, but the channel width was relatively
large. This sitc was not so much an impingement as it was a concentra-
tion of flow on one sidc of the river. This was the initial measurement
sitc and was chosen because velocities appeared to be low compared to
the other sites. Velocities were taken at site E-1 with only the 100-1b
lead fish, and water depth could not be determined with any confidence
because of the large cable deflection in the downstream dircction with
the single fish.

b. Site D-1 (6 and 12 June 1991). Al site D-1, almost all of the How in
the river was in a single channel against the levee. The impingement
angle was about 40 dcg, and a significant amount of flow was entering
the impingement site from a second channel parallel to the levee, At
this site, the single lead fish was swept too far downstream. and a
second lead fish weighing 140 1b was added below the firsy fish and
used for all remaining tests. The electromagnetic velocity meter was
I8 in. above the bottom of the lower fish. This site had velocities up to

Chapter 2 Description of Tests and Data




16 {t/sec, but the water-surface slope measured along the bank line did
not show the large values measured at other sites, possibly becausc
measurements were limited o 100 ft upstream of sta 5+00. Mecasure-
ment of surface velocity based on surface debris yielded a velocity of

13 ft/sec between sta 4+00 and 6+00. The debris velocity was measured
if its position relative to the bank was near the position of e maximum
measured velocities. The channel bottom observed on 6 June is shown
on the 12 June plot (Plate 32).

¢. Site A-1 (7 and 10 June 1991). Most of the flow in the river was
against the levee at this site, but some flow was in channcls in the
middle of the levees. The impingement angle was about 45 deg and
flow was also entering the impingement site from a second channel
parallel to the levee on 7 June with a lesser amount on 10 June. Surface
float velocities about 30 ft from the bank line averaged 11 fi/sec
between sta 4+00 and 6+00. Velocitics and water-surface elevations
were similar on 7 and 10 June, but some scour occurred between 7 and
10 June at sta 4+00. Mecasurcment of riprap size at site A-1 showed an
average W¢q of about 150 Ib. Riprap size was not measured at ather
locations, but surveys by the U.S. Army Engincer District, Walla Walla,
in 1987 show the average sizc to be less than 100 1b.

d. Site A-2 (7 and 10 June 1991). At this site, a significant amount of the
riverflow was in other channels away from the levee. The impingement
angie at this site was about 60 deg. Surface float velocities on 7 June
were about 13 ft/scc between sta 4+00 and 6+00. Significant differences
in the flow impingement were cvident from 7 June compared o 10 June
indicating the dynamic nature of braided streams. Vclocities measuicd
on 10 june were 60-70 percent of those measured on 7 June, and the
water-surface elevations had increased by up to 1.5 ft. The maximuom
impingement point had moved downstream about 200 ft. The causc of
these changes was not apparent from the on-ground inspection.

e. Site B-1 (8 and 11 June 1991). A significant portion of the total
riverflow was in channcls away from the levee at this site. The large
impingement angle of about 70 deg resulted from the curved fevee
alignment. Surface float velocities were as follows:

Sta Velocity, ft/sec
3+00 to 4400 9.0
4+00 to 5400 110
4450 10 5450 120
5+00 to 6400 125
5+50 to 6+50 1.0
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Side slope velocities on 8 June were relatively large. Velocities at
sta 4+50 were much smaller on 11 June than on 8 June indicating some
type of change upstream.

f. Site B4 (8 and 11 June 1991). Most of the riverflow was against the
levee at this site. The flow impingement angle was about SO deg on a
relatively straight levee alignment. Surface float velocities were as
follows:

i Sta l Velaclty, tt/sec
3+00 to 4400 11.0
4400 to 5+00 125
$+00 to 6+00 13.0
6+00 o 7+00 12.0

The bottom elevation on 8 June was not determined, and the bottom
shown (Plates 27 and 28) is from the 11 June measurements. Water-
surface measurements were similar on 8 and 11 June.

g Siute E-2 (12 June 1991). Most of the riverflow was against the levee at
this site, and the curved levee alignment caused an impingement angle
of about 60 deg. Surface float measurements were as follows:

k:su Velocity, ftsec
3+50 to 4+50 10.0
4+00 to 5+00 10.5
4450 to 5+50 11.0
5+00 to 6+00 1.5
5450 to 6+50 130
6+00 to 7400 13.0

Sta 5+70 exhibited relatively large depths at the toe (15 ft) and high
velocities up on the side slope (>12 fi/sec).

h. Site D-2 (12 June 1991). The flow approaching site D-2 was only a
portion of the total riverflow, and the impingement angle was about
60 deg. Velocities were measured at only sta 5+00, and surface float
velocities were as follows:

Chapter 2 Description of Tests and Data
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Sta Velocity, tUsec
3+00 to 4+00 8.0
4+00 to 5+00 115
5+00 to 6400 125
6+00 to 7+00 120

Bottom elevations could not be detected with enough certainty to record

values at this site.

A comparison of velocities at site A-2 was made between the electro-
magnetic velocity meter that was used in all of the other tests and a Price
current meter. The Price meter measurements are shown in Plate 48. While it
was almost impossible to reposition the Price meter in exactly the same posi-
tion as the electromagnetic meter, the agreement was fair with Price meter
readings ranging from 92 to 117 percent of the electromagnetic velocity meter

readings.

Chapter 2 Description of Tests and Data




3 Analysis of Data

The maximum local water-surface slope over a distance of 100 ft at all
impingement sites ranged from 18 to 82 ft/mile with an average of 45 ft/mile
or about 2.4 times the overall stream gradient.

Most sites had maximum point velocities exceeding 14 ft/sec. Maximum
depth-averaged velocity exceeded 12 fUsec at many sites, and similar to sharp
bendways, depth-averaged velocity remained high over a significant part of the
side slope. Velocity profiles were skewed so that the maximum point velocity
over the toe of slope often occurred at 0.4-0.6 depth above the bottom. This
type of velocity profile is typical of sharp bendways and would place a much
greater stress on a revetment than a typical profile having the maximum point
velocity closer to the water surface.

Part of the objective of this study was to develop methods for estimating
impinged flow velocities in braided channels. One of the techniques used in
meandering channels is to relate the maximum velocity in a bend 1o the
average channel velocity at the bend entrance. In sharply curved bends the
ratio of maximum side slope velocity V,, to average channel velocity generally
ranges up to 1.6. V.  in the riprap design procedure given in Engineer Manual
(EM) 1110-2-16011 s the depth-averaged velocity at 20 percent up the slope
from the toe. Impingement sites are simply poorly aligned bendways.
Defining the average channel velocity in a braided channel approaching the
impingement point is difficult compared to single channels. One option would
be 10 use the average channel velocity from an HEC-2 water-surface profile
computation for a discharge of 15,000 cfs. Water-surface profiles were
previously computed by the Walla Walla District for a discharge of about
25,000 cfs. At this discharge, the midchannel bars are submerged and flow is
generally parallel to the levees. At a discharge of 15,000 cfs, flow is confined
to the single or multiple braided channels that are not parallel to the levees.

To use HEC-2 for flow within the braided channels would require cross-
section data far beyond what was used for the 25,000-cfs discharge. A method
is needed for determining the average channel velocity for intermediate flows.

1 Headquarters, U.S. Army Corps of Engineers. (1991 (1 July)). "Hydraulic design of flood
control channels,” EM 1110-2-1601, U.S. Government Printing Office, Washington, DC.

Chapter 3 Analysis of Data
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One possibility is to use the observed cross sections in HEC-2 to determine
the cross-sectional area when the stage is near the top of the midchannel bars,
which was the stage when the field measurements were conducted. This area
was selected because the most severe impingement is generally assumed to
occur when the discharge produces a slage near the top of the midchannel bars.
The Committee on Channel Stabilization™ states that "revetment size should
be based on bank velocities corresponding to design water surface with con-
sideration being given to the fact that direct impingement of moderate flows
(15,000 cfs) may cause local damage more severe than the design flows."
Plates 49-52 show eight cross sections downstream of the Gros Ventre River
along with a stage near the tops of the midchannel bars. Unfortunately only
one of the HEC-2 cross sections occurred near the velocity sites reported
herein. Measurements at site B-4 coincided with the cross section at sta 7+05.
The average channel area below the stages observed during June 1991 was
about 2,000 sq ft. Since the stage was close to the tops of the midchannel
bars, the measurements reported herein were close to the maximum in terms of
levee attack and velocity magnitude. Using a discharge of 15,000 cfs for the
reach downstream of the Gros Ventre River and an average channel area of
2,000 sq ft resulted in an average channel velocity of 7.5 ft/sec. The
maximum depth-averaged velocity measured near the toe of the riprap revet-
ment was about 11.9 ft/sec, giving a ratio of maximum depth-averaged velocity
to average channel velocity of about 1.6, which is reasonable based on results
from meandering channels. More data are needed to test this approach. Addi-
tional data are needed at discharges both less than and greater than the dis-
charges measured herein to test the hypothesis that the impingement is most
severe when the stage is near the tops of the midchannel bars.

Another objective of this study was to develop techniques for estimating
local scour at impingement points. The lack of bed material data prevents the
development of any general guidance, but information specific to the Snake
River can be developed from the observed data. Plate 53 shows the tops of
the main channel bars and the deepest point in the cross section, both taken
from survey data collected in 1988. The detailed channel data suggest that the
data were taken during low-flow conditions. The difference between the two
lines ranges from 4 to 14 ft. The velocity plots presented herein show a
maximum depth below the 15,000-cfs water level of about 15 ft. If the
15,000-cfs flow rate is near the conditions of maximum levee attack, then the
design scour for the Snake River reach shown in Figure 1 should be a
minimum of 17 ft below the elevation of the midchannel bars as defined in
Plate S3. This allows a 2-ft margin below the deepest observed scour.

1 Committee on Channel Stabilization, Corps of Engineers, U.S. Army. (1974). "lackson
Hole, Wyoming, flood control project,” Technical Report No. 11, U.S. Army Engineer Water-
ways Experiment Station, Vicksburg, MS.
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4 Summary and Conclusions

Flow impingement on the Snake River results in depth-averaged velocity
exceeding 12 ft/sec near the revetted levees. Maximum point velocities were
up to 16 ft/sec. Typical impingement points had flow approaching the levee at
angles up to 70 deg. Water-surface slopes at the impingement sites average
2.4 times the average slope of the stream.

A method for estimating impingement velocities is proposed herein based on
average channel velocity with a flow producing a stage near the tops of the
midchannel bars. This average velocity should be muitiplied by 1.6 to obtain
maximum impingement velocities. Additional data are needed on other im-
pingement streams as well as data to test the hypothesis that stages near the
top of the midchannel bars produce the most severe levee attack.

General guidance on scour depths could not be developed from these data
because of the lack of bed material data. Results from these measurements
and previous cross sections obtained in 1988 suggest that if the intermediate
flows reported herein produce the most severe levee attack, design scour
depths should be a minimum of 17 ft below the tops of the midchannel bars.

Chapter 4 Summary and Conclusions
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